Follow the above link or click the graphic below to visit the Homepage. |

Population Modelfor ASD Studies Jim Cullen |

P_{G} = ( 2 ^{.} m_{p} )^{G} |

[ 1 + ( 2 ^{.} m_{p} - 2)z + z^{2} ]^{G} |

v = |
Sum(R^{2}) - [ Sum(R) ]^{2} / P_{G}P _{G} |

v = |
2 ^{.} G ^{.} P_{(G-1)}P _{G} |

v = |
2 ^{.} G2 ^{.} m_{p} |

v = |
G ^{.} w |

G | ||

T( G , k ) = | ( 2^{ . }m_{p}-2 )^{2i-k}^{ . }binomial( G , i )^{ . }binomial( i , k-i ) | |

i = 0 | ||

where... | ||

G = Number of Generations from founder.k = G + final relative change in STR repeat value (R). |

D( G , k ) = |
T( G , k )P _{G} |

G | ||

Paths = | binomial( G , i )^{ . }binomial( i , k-i ) | |

i = 0 | ||

where... | ||

G = Number of Generations from founder.k = G + final relative change in STR repeat value (R). |

u_{4} = | G ^{.} ( 4 ^{.} G - 3 )m _{p}^{2} |

u_{4} = | m_{p} - 3G |

E_{cc} = | Sqrt( 3 / G ) ^{.} 3^{G}2 ^{.} Sqrt( pi ) |

E_{cc} = | E_{cc}0.1875 / ( G - 0.1767 ) + 1 |

E_{cc} = | E_{cc}1 - 0.04311 / G ^{3.314} |